If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5.5x^2+50x+88=0
a = 5.5; b = 50; c = +88;
Δ = b2-4ac
Δ = 502-4·5.5·88
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{141}}{2*5.5}=\frac{-50-2\sqrt{141}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{141}}{2*5.5}=\frac{-50+2\sqrt{141}}{11} $
| -30=5(x+1 | | 5x-8=129 | | 11x*3-3=51 | | 37(0x+37)=12 | | 3+x/3=15 | | 6x/13=16 | | 6w+36=9(w+5) | | 7x-3=4+x-2+2x-8 | | 12(0x-37)=37 | | 3(m+72)=15 | | 100+10x=0 | | 7x=2(3-x) | | 1(2x-37)=37 | | 10p+3=4 | | 4x(3x+5)-7(3x+5)(2x-1)=0 | | 20(2x+37)=37 | | 0.3-0.3(x+1)=-0.5(1-x) | | 11/16n-3+1/4n=2/4 | | 2.5=2/3x | | 167.45=17(6.20-2.80x) | | -2(w-4)=5w+43 | | 2x+9+4x-1=8x+10 | | 4=-1+x/11 | | (v+7)^2-54=0 | | 5r-31=24 | | 5r-31=244 | | 8(2y-5)=112 | | 3.45^x=8 | | 8(2y-5=112 | | 12(0x-+37)=37 | | 6.45^x=8 | | 6c-13/2=2c-11/2 |